Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers
نویسندگان
چکیده
The diverse flowers of Orchidaceae are the result of several major morphological transitions, among them the most studied is the differentiation of the inner median tepal into the labellum, a perianth organ key in pollinator attraction. Type A peloria lacking stamens and with ectopic labella in place of inner lateral tepals are useful for testing models on the genes specifying these organs by comparing their patterns of expression between wild-type and peloric flowers. Previous studies focused on DEFICIENS- and GLOBOSA-like MADS-box genes because of their conserved role in perianth and stamen development. The "orchid code" model summarizes this work and shows in Orchidaceae there are four paralogous lineages of DEFICIENS/AP3-like genes differentially expressed in each floral whorl. Experimental tests of this model showed the conserved, higher expression of genes from two specific DEF-like gene lineages is associated with labellum development. The present study tests whether eight MADS-box candidate SEP-, FUL-, AG-, and STK-like genes have been specifically duplicated in the Orchidaceae and are also differentially expressed in association with the distinct flower organs of Phalaenopsis hyb. "Athens." The gene trees indicate orchid-specific duplications. In a way analogous to what is observed in labellum-specific DEF-like genes, a two-fold increase in the expression of SEP3-like gene PhaMADS7 was measured in the labellum-like inner lateral tepals of peloric flowers. The overlap between SEP3-like and DEF-like genes suggests both are associated with labellum specification and similar positional cues determine their domains of expression. In contrast, the uniform messenger levels of FUL-like genes suggest they are involved in the development of all organs and their expression in the ovary suggests cell differentiation starts before pollination. As previously reported AG-like and STK-like genes are exclusively expressed in gynostemium and ovary, however no evidence for transcriptional divergence was found in the stage investigated. Gene expression suggests a developmental regulatory system based on the combined activity of duplicate MADS-box genes. We discuss its feasibility based on documented protein interactions and patterns of expression.
منابع مشابه
A Modified ABCDE Model of Flowering in Orchids Based on Gene Expression Profiling Studies of the Moth Orchid Phalaenopsis aphrodite
Previously we developed genomic resources for orchids, including transcriptomic analyses using next-generation sequencing techniques and construction of a web-based orchid genomic database. Here, we report a modified molecular model of flower development in the Orchidaceae based on functional analysis of gene expression profiles in Phalaenopsis aphrodite (a moth orchid) that revealed novel role...
متن کاملFlower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes
The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four...
متن کاملCharacterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit.
MADS-box genes encode transcriptional regulators that are critical for flowering, flower organogenesis and plant development. Although there are extensive reports on genes involved in flower organogenesis in model and economically important plant species, there are few reports on MADS-box genes in woody plants. In this study, we have cloned and characterized AGAMOUS (AG), SEEDSTICK (STK) and SE...
متن کاملMADS-box protein complexes control carpel and ovule development in Arabidopsis.
The AGAMOUS (AG) gene is necessary for stamen and carpel development and is part of a monophyletic clade of MADS-box genes that also includes SHATTERPROOF1 (SHP1), SHP2, and SEEDSTICK (STK). Here, we show that ectopic expression of either the STK or SHP gene is sufficient to induce the transformation of sepals into carpeloid organs bearing ovules. Moreover, the fact that these organ transformat...
متن کاملA De Novo Floral Transcriptome Reveals Clues into Phalaenopsis Orchid Flower Development
Phalaenopsis has a zygomorphic floral structure, including three outer tepals, two lateral inner tepals and a highly modified inner median tepal called labellum or lip; however, the regulation of its organ development remains unelucidated. We generated RNA-seq reads with the Illumina platform for floral organs of the Phalaenopsis wild-type and peloric mutant with a lip-like petal. A total of 43...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014